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DESIGN, PRODUCTION AND EVALUATION OF IMPROVED CAST SHELL ALLOYS 

USING MATHEMATICAL MODELS 

BY 

John Zotos 

ABSTRACT 

This investigation attempts to implement a scientific analysis of factors 
affecting the properties of cast shells~ design some improved cast shell alloys, 
and suggest how to produce these new products. 

Incomplete fragmentation data resulted in the redirection of this project 
towards an implementation of a scientific analysis of factors affecting the 
mechanical properties of ductile cast iron alloys. 

Two series of mathematical models are evaluated, i.e., Series 1, based on 
microstructural data and Series 2, based on alloy content data. Only the last 
four (4) of the eighteen (18) equations generated are significant· at the 0.001 
confidence level, or less, and seventeen (17) out of the twenty-four (24) 
independent, elemental variable (71%) are in agreement with metallurgical theory. 

Since this investigation was based on a limited number of data sets, it 
is recommended that it be continued and expanded in the near future. 
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I. INTRODUCTION 

I. A. Preface 

~n examination of the metallurgical literature indicates that current cast shell com­
positions and processing procedures have been developed empirically, rather than in 
a scientific manner. This situation has yielded variable fragmentation results and 
has clouded the direction of future investigations due to the availability of too 
many uncertain, non-reproducible cast shell properties. It is evident, therefore, 
that a more scientific, analytical approach should be iaitiated immediately towards 
developing the desired cast shell alloys having reproducible properties. This is 
the aim of the study presented in this repor..:.:J ...... , 

I. B. Obj~<:t_!vE!_ 

This investigation attempts to implement a scieatific analysis of facters affecting 
the properties of cast shells, develop a series of mathematical models which predict 
the desired properties of these cast shelh, aad ia asseciation with the Army Ma­
terials and Mechanics Research Center, desiga, preduce aad evaluate the improved 
cast shell alloys. 

I. c. General Procedure 

There are several steps required in the scieatific development of improved cast shell 
alloys, namely: 

1. Evaluate the variables affectiag tke preperties of cast s~ells 
such as casting history, section size, grain size, thermal 
history, and alloy content. 

2. Develop stati~tical models or equatieas w~ica s~ew t~e coatribu­
tions of each of these variables towards tke magnitudes ef 
properties exhibited by the cast shells. 

3. Analyze the metallurgical and statistical sigaificance, aad 
validity of the developed models in predictiag properties. 

4. Design an improved cast shell alloy cempesitiea aad process 
history which should exhibit improved properties. 

S. Produce the newly designed cast shell alley ia agreemeat with 
the prescribed process history. 

6. Test the developed cast shell alley and assess its level ef 
attainment of design objectives. 

7. Redevelop new statistical models using t~e aew data aad repeat 
steps 3, 4, 5, and 6. 

Research being conducted at Northeastern Uaiversity has indicated the sigaificaace 
of this scientific approach towards the developmeat of impreved ~!st 2me§al 4al!•Y~) having predictable chemical, mechanical aad physical properties. ' ' ' ' ' 



II. STATISTICAL 11ETHODS 

Given a set of independent values (chemical composition and process variables) and a 
corresponding set of dependent values (mechanical properties) it is desired to find 
some functional form which will relate the dependent values to their independent values. 
The main approach in this study was to select a linear relationship as the functional 
form. 

A linear equation explicitly defining the mechanical property was used of the fonn, 

Mechanical Property= A+ B (7~1 ) + C (% X2) + ••• 

where A is a pure constant used to adjust the hypersurface to the proper range of in­
spection of the nodular cast iron's mechanical property. This constant is the mean 
value of the irot. mechanical property minus the sum of the products of the means of 
the independent variables with their respective coefficients. B, C, D, ••. are net re­
gression coefficients (sometimes called partial regression coefficients), so called 
since they indicate the average change observed in the mechanical property due to a 
unit change a£ their respective independent variable while holding all other variables 
constant. 

To find the constants A, B, C, D, •• , which will position a hyperaurface SG that the 
optimum correlation between computed and observed results is achieved, a multiple 
linear regression system (least squares method) is used. The salution by the least 
squares method for a system with several independent variables would become pro­
hibitively lengthy for hand calculation, therefore, a cemputer program was used to 
perform the desired calculations. 

The utilization of linear relationships has its faults. The linear equation assumes 
that an increase in the value of the independent variable necessarily iadicates a 
corresponding increase in the dependent variable regardless of the indication of any 
possible discontinuity or new phase fermatioa in the metal system, and the so-called 
"principle of diminishing returns" is prohibited. 

The regression equations can be justified only within the range specified by the ob­
servatiens used to derive the equation, cannot reflect aDy phenamena that might occur 
outside the inspected range. However, it caa be assumed that the functional relation­
ships between the chemical cempositions of an alloy system, the process variables and 
the resultant mechanical property is a continuous one and seme extrapolation beyond 
the observed range may be permitted with s•me degree of accuracy. ~ pri•ri knowledge 
of the metal system then can justify seme extrapolation of the regression equation 
beyond the observed range. The range ef application of tne data used for the deriva­
tion of each equation in this report is tabulated as is tne arithmetic mean values 
of each variable. The total alloy coatent of the system is also given and aay 
analysis of a system with alloy content exceeding this maximum will be an extrapola­
tion beyond the intended range. 

II. B. Statistical Parameters 

II. B. 1. Validity ef Equations 

Whea an equatien is derived by a regression system it must be justified as to its 
reliability and analyzed for its accuracy of estimate and its cerrelatioa with the 
given data. To accomplish this analysis, several statistical parameters are used. 
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These parameters are (1) the standard error o_f estiJll8te (a ) , (2) the coefficient of 
multiple correlation (R) and (3) the "F ratio". These sta~istical indicators can be 
used to show how closely the estimated values.of the mechanical property can be ex= 
pected to ~gree with the actual valuesD and what portion of the variance has been 
left unexplained. An indication is also given as to which dependent variables are 
most poorly represented by assuming a linear relationship. The statistical meaning 
of each parameter will now be discussed, and statistical references should be sought 
for formulas for each of these parameters. 

The standard error of estimate (a ), sometimes called the standard deviation of es-e timate, is used to attain a measure of how closely the calculated estimate of the 
dependent variable agrees with the actual value. a has the units of the mechanical 
property and indicates that 68.26 percent of the caiculations performed using the 
regression equation and the given observations will have an error under the value 
of a • The maximum error in prediction 95.44 percent of the time is 2ae• This is 
base9 on the assumption that the observed data has a normal distribution. This as­
sumption is the basic assumption used in statistical analysis and can be assumed 
valid for a random population with over 100 degrees of freedom. 

The coefficient of multiple correlation (R) is the ratio of the standard deviation 
of the estimated values to the standard deviation of the original values. It in­
dicates the relative importance of all the variables combined in predicting the 
dependent variable. It is, in essence, a measure of the closeness of fit of the 
observable data to the regression equation, where the value 1.0 indicates perfect 
co~relation, while 0.0 indicates no correlation. The square of the coefficient 
(R ) is the percentage indicating what portion of the variation of the mechanics~ 
property has been explained by the variation of the independent vari~bles.. (1-R ) 
is the percentage of the variation left unexplained. For example, R • 0.8 would 
indicate that 80 percent of the variation of the mechanical property has been sue= 
cessfully explained by the independent variables, whereas 20 percent of the varia~ 
tion has been left unexplained. This unexplained variation presumably is caused 
by unobserved residual elements or other variables that were neglected in this 
study. 

The "F-ratio" is a reliability parameter attributing a level of significance to the 
equation. If the ''F-ratio01 yields a significance level below 5 percent, the results 
are acceptable to a statistician. A level of significance of 5 percent or below, 
indicates that the probability is one out of twenty that the results obtained were 
achieved purely by chance. Any significance level higher than 5 percent indicates 
that the probability that the results occurred by chance is high, and that the ob~ 
servations used to generate the regression equations were not drawn from the same 
source, and therefore, have a low correlation. 

The degrees of freedom (D. of F.) illustrate the excess amount of data points 
available to be used in the regression equat~on and as the degrees of freedom inm 
crease, the accuracy of the results increase. There is, however, an economical 
limit above which a further increase in the degrees of freedom yields a lesser in= 
crease in accuracy. One hundred degrees of freedom and over is considered a re= 
spectable number for a regression system. As an example of determining the· degrees 
of freedomp assume that an equation has two unknown constants. To solve for these 
unknowns, two conditions are needed; if, however, 10 conditions are available 9 there 
is an excess of eight conditions, therefore, the system has eight degrees of freedom. 

The above statistical parameters are tabulated for each equation generated and proper 
conclusions are drawn. The level of significance (Lo of So) based on the uuF-ratio11 

criteria is recorded. 

3 



II. B. 2. qualitative and Quantitative Analysis of Equations 

Once the validity of the equations has been establisked, quantitative and qualitative 
methods of analysis are presented and analyzed. To find the qualitative effect of the 
independent variables on the dependent variables simply inspect the signs of the con­
stants (net regressien coefficients). If a positive constant is associated with a 
particular variable then the equation infers that a positive addition of the variable 
will increase the value of the mechanical property. Likewise, the addition of nega­
tive contributors will decrease the iron's mechanical property. 

These equations are unique in that they provide quantitative as well as qualitative 
results. The mean contribution of each variable is found and compared to other ele= 
ments, to indicate which variable is the most effective contributor for increasing 
the value of the mechanical property and which is the least effective. Some tables 
and graphs are provided for the most significant equations developed, iadicating the 
following parameters: (1) The mean contribution ef each variable is the product of the 
arithmetic mean value of the variable as previously tabulated aad the associated net 
regression coefficient. (2) Tke percent contribution of each variable toward an in­
crease in the mechanical property is simply the ratio of the products to the sum of 
the products plus the pure constant term. Note, at this point, that the constant 
term is given these equations to cempensate for the effect of the base metal and ne­
glected variables. Mataematically, this term prevents tae regression line from going 
through the origin when all the variables are deleted. It could not be expected, hew­
ever, that a deletion of all the elements would yield a mechanical property fer iron 
since the equation has not been developed for inspection in this range and is there­
fore invalid. 

The unit increase in the mechanical property for a nominal unit additioa of each 
variable can also be determined. The unit increase can be determined by inspection 
of the ceefficient of each independent variable. However, tkis parameter should be 
used only as a rough guess as to the effect of the variable, siRce the parameter is 
independent of the other variables, whereas, it is known that the independent vari­
ables are highly interrelated. Proper conclusions from the above two parameters are 
given after the presentation of tae tabulated results for each equation. 

After the qualitative and quantitative results are established aad discussed, a geft­
eral conclusion as to the validity and predictability of tne equation as well as its 
agreement witn knewn experimental results is presented. 

4 
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III. DESCRIPTION OF DATA 

III. A. Initial Literature Survey 

The initial effort was directed tewards a c~plete literature survey te ebtaia reliable 
cast shell fragmentatien and mechanical property data for a variety ef alleys such as 
gray, malleable and nodular irons and hyper-eutecteid steels, derived from: 

a. a 'knewn casting history; 

b. a kn.ewu. section size; 

c. a knewn thermal histery; a ad 

d. a knowa alley content. 

A review of several hundred techaical reperts en the subject matter resulted in tke 
segregation of twenty-eight (28) significant papers which centaiaed a variety ef 
data. Eack ef t~ese twenty-eight reperts was further examined te determiae the spe­
cific listing ef the fellewing infermatien: 

a. fragmentation data, i.e., the mass distribution ef the 
particles after a test blast; 

b. sectiea size of tke cast shell; 

c. alloy centent; 

d. grain size; 

e. micrestructural characteristics; 

f. thermal history; and 

g. mechanical properties such as Medulus ef Elasticity, Tensile 
Streagth, Yield Strength; Percent Eleagatien, Perceat Reductiea 
in Area; Impact Strength and Hardness. 

Eack of these twenty-eight reports were then classified as to wkich of tke afere­
mentioned properties were lacking in the reports furnished by the Army, so that the 
gaps existing in the available data could be filled in. Several attempts to fill 
gaps in the available cast shell fragmeatation data ended in failure. 

Siace the fragmentation data search was ealy partially successful, part of the ef~ 
fert was directed tewards a new objective, namely, to implement a scientific aaaly­
sis of factors affecting the properties of ductile cast iroas. Correlatisn ef tke 
mechanical preperties of ductile cast iroas with processing variables, microstructural 
variables, etc., then commenced. 

III. B. Mechanical Property and Microstructural Data - Series 1 

The series 1 data included mechanical property and microstructural results frem sev­
eral cast, ductile irea shellsp produced by tke Army. 



The dependent mechanical property variables ckesen were as follews: 

1. Teasile Strength; 

2. 0.2% Yield Strength; 

3. Percent Elengation; 

4. Percent Reductien in Area; and 

5. Briaell Hardness Number. 

The independent, micrestructural variables chesen were quantitatively evaluated using 
varieus metallographic techniques and include: 

1. Volume percent Graphite; 

2. Volume percent Ferrite; 

3. Volume percent Pearlite; and 

4. Mean radius of the Graphite aedules. 

Series 1A included enly eight (8) coaplete data sets and the high, lew and mean values 
ef the qualifying dependent and independent variables are listed in Table 1. 

TABLE 1 HIGH, LOW, AND MEAN VALUES 
OF THE DEPENDENT AND INDEPENDENT VARIABLES 

SERIES 1A 

VARIABLE HIGH LOW MEAN 

'!ENSILE 112,800 55,000 76,444 
STRENGTH 

YIELD STRENGTH 71,500 37,750 50,919 
(.2%) 

PERCENT ELONGA. TION 19.5 2.3 10.7 

PERCENT REDN. 22.8 2.6 11.9 
OF AREA 

BRINELL 245 121 169 
HARDNESS 

VOL. PERCENT CARBON 26.0 10.0 13.6 

VOL. PERCENT 74.3 o.o 32.8 
PEARLITE 

VOL~ PERCENT FERRITE 90.0 14.5 53.6 

GRAPHITE MEAN RADIUS .001340 .000675 .000964 

Total No. of Data Sets = 8 
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Series lB iacluded twelve (12) cemplete data sets aad the high, l•w aad mean values •f 
the qualifyiag dependent and independent variables are listed ia Table 2. 

TABLE 2 HIGH, LOW, AND MEAN 
VALUES OF niE DEPENDENT AND INDEPENDENT VARIABLES 

SERIES lB 

VARIABLE HIGH LOW 

'!ENSILE 112,800 55,000 
STRENGTH 

YIELD 71,500 ·37,750 
STRENGTH {.21.) 

PERCENT 21.0 0.5 
ELONGAnON 

PERCENT REDN. 23.7 0.9 
IN AREA 

BRINELL 245 121 
HARDNESS 

VOL. PERCENT 26.0 5.9 
CARBON 

VOL. PERCENT 76.7 o.o 
PEARL I'm 

VOL. PERCENT 90.0 14.5 
FERRI 'IE 

GRAPH I 'IE MEAN .001340 .000428 
RADIUS 

Total No. of Data Sets = 12 

III. c. Mechanical Property and Alley C•ntent Data - Series 2 

MEAN 

79,642 

52,581 

10.9 

11.8 

176 

12.0 

33.3 

54.7 

.000834 

The series 2 data incl~ded mechanical property ·~~)alloy content information from 
as-cast and normalized ductile cast irea alloys. 

The dependent mechanical pr•perty variables ch•sen were as f•llows: 

1. Tensile Strengtk; 

2. 0.2% Yield Strength; 

3. Percent Elengation; and 

4. Brinell Hardness Number. 

7 



The independent elemental variables iacluded: 

1. total percent carbon; 

2. percent silicon; 

3. percent manganese; 

4. percent nickel; 

5. percent melybdenum; and 

6. percent magnesium. 

The series 2A infermatien was derived fr.m as-cast specimens and included fifteen (15) 
cemplete data sets. The high, lew and mean values ef the qualifying dependent and in­
dependent variables are listed in Table 3. 

TABLE 3 HIGH, LOW AND MEAN VALUES 
OF THE QUALIFYING DEPENDENT AND INDEPENDENT 

VARIABLES ()F AS-CAST J».TA - SERIES 2A 
' 

VARIABLE HIGH LOW 

ULTIMATE TENSILE STRENGTH 123,300 91,000 

0. 2%' YIELD STRENGTH 87,500 70,800 

PERCENT ELONGA noN 4.8 0.8 

BRINELL HARDNESS NO. 305 264 

TOTAL CARBON 3.70 3.46 

PERCENT SILICON 2.19 1.80 

PERCENT MANGANESE 0.92 0.17 

PERCENT NICKEL 2.58 0.62 

PERCENT MOLYBDENUM 0.50 0.01 

PERCENT MAGNESIUM 0.073 0.042 

Total No. of Data Sets = 15 

MEAN 

113,393 

77' 213 

3.606 

280 

3.56 

1.96 

0.458 

1.766 

0.0426 

0.0517 

The series 2B infermatien was obtained frem nermalized specimens and included tkirteen 
(13) complete data sets. The high, lew and mean values ef the qualifying dependent 
and independent variables are listed in Table 4. 

8 
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TABlE 4 HIGH, LOW AND MEAN VALUES OF mE 
QUALIFYING DEPENDENT AND INDEPENDENT 

VARIABlES OF AVERAGE - NORMALIZED DATA - SERIES 2B 

VARIABlE HIGH LOW MEAN 

ULTIMA'IE '!ENSilE STRENG'lll 138,600 125,500 130,775 

0. 2'%. YmLD STRENGTH 130,100 79,900 88,737 

PERCENT ELONGA.TION 5.5 0.5 3.94 

BRINELL HARDNESS NO. 390 284 301 

TOTAL CARBON . 3. 70 3.46 3.56 

PERCENT SILICON 2.19 1.80 1.96 

PERCENT MANGA.NESE 0.92 0.17 0.458 

PERCENT NICKEL 2.58 0.62 1. 766 

PERCENT MOLYBDENUM 0.50 0.01 0.0436 

PERCENT MAGNESIUM 0.073 0.042 0.0517 

Total No. of Data Sets • 13 



IV, MECHANICAL PROPERTY MATHEMATICAL HODELS 

IV. A. Series lA Data 

The initial computer analysis attempted to derive a multiple, linear regression model 
for each of the five (5) dependent mechanical properties as a function of all four 
(4) of the independent microstructural variables listed in Table 1. A total of five 
(5) equations or models were generated and had this general fena: 

MECHANICAL PROPERTY = A
0 

+ A
1 

(Volume Percent Carbon) + A
2 

(Volltllle Percent 

Pearlite) + A
3 

(Volume Percent Ferrite) + A
4 

(Graphite 

Mean Radius) 

IV. A. 1. Linear Regression Models 

All five (5) equations were derived on the basis of only eight (8) sets of data (See 
Table 1). Solving for the five (5) constants required by the general equation, i.e., 
A0 , A1 ~ A2, A3 , and A4 , leaves only three (3) degrees of freedom for the regression 
analys1.s. 

The initial five (5) models were generated to explain the variation in the ductile 
cast iron's tensile strength, 0.2% yield strength, percent elongation, percent re­
duction in area, and Brinell hardness number and are listed in Mathematical Model 
Set I. The correlation coefficient, i.e., R, and standard error of estimate, i.e., 
cr e' are also listed for each of these equations. Within ±la , each equation can 
predict the mechanical property 68 percent of the time, and 95 percent of the time 
within +2a of its mean value. - e 

IV. A. 2. STATISTICAL SIGNIFICANCE 

The level of significance of each equation and coefficient generated, i.e., ll_, 

was determined on the basis of the following parameters: 

1. R - Correlation Coefficient 

2. F - Ratio Calculated 

3. t - Test Calculated 

4. The Degrees of Freedom 

In most cases, only those expressions or equations whose. level of significance, 
i.e., ~is 0.01 or less, should be considered worthy of discussion and significant. 
In addition, independent variables whose a values are 0.20 or less should be con­
sidered significant and analyzed further. 

Based upon the values of R for equations 1-5 (see Mathematical Model Set I) and their 
associated degrees of freedom, F-ratio, etc., all five (5) models are significant at 
only the 0.1 confidence level. 

Figures 1-5 illustrate the calculated vs. the experimental values of the ductile 
cast ironis dependent mechanical properties evaluated in equations 1•5. These graphs 
are called plotbacks and are actually visual representations of the correlation co­
efficients of each model generated. 

In addition, Figures 6·10 identify the level of significance of each independent 
variable contained in equations 1-5. As shown in these figures, none of the indiv­
idual coefficients were statistically significant below the 0.3 confidence level. 

10 



MAniEMATICAL MODEL SET I - SERIES lA 

EQUATIONS 

TENSilE STRENG'nl = +15,339 + 1,071 (Vol % C) + 9CJ (Vol % P) 
+ 223 (Vol % Fe) + 6,648,900 (r) •••••••••••••• (1) 

R(l) = 0.926 a = 13,600 psi 
e (1) 

0.2% YIELD STRENG'nl = -17,901 + 2,148 (Vol % C) + 844 (Vol % P) 
+ 426 (Vol %Fe) - 8,608,800 (r) ••••••••••• (2) 

R(2) = 0.920 a = 9,100 
e (2) 

PERCENT ELONGATION = -28.84 + 1.534 (Vol %C) + 0.150 (Vol % P) 
+ 0.303 (Vol% Fe) - 704.4 (r) •••••••••••••• (3) 

R(3) = 0.834 a = 5.62 
e (3) 

PER~NT REDUCTION IN AREA = -33.33 + 1.998 (Vol '7. C) + 0.168 (Vol % P) 
+ 0.332 (Vol %Fe) - 3,386 (r) ••••••• (4) 

R(4) = 0.901 

BRINELL HARDNESS NUMBER = 317.3 - 9.40 (Vol %C) - 0.316 (Vol % P) 
- 1.62 (Vol% Fe)+ 68,787 (r) •••••••••••••• (5) 

R(S) = 0.942 a = 23.35 
e (5) 

11 
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INDEPENDENT MEAN 
VARIABLE VALUE 

VOL. %C 13o6 

VOL. %.!:, 32.8 

VOL. % Fe 53.6 

r of GRAPHITE .000964 

CONSTANT 

MEAN MECH. 
PROPERTY 

TABLE 5 QUANTITATIVE RESULTS OF THE TENSILE 
STRENGTH, YIELD STRENGTH, REDUCTION IN AREA, PERCENT 

ELONGATION AND BRINELL HARDNESS EQUATIONS 

Series lA 

TENSILE STRENGTH YIELD STRENGTH PERCENT ELONG. 

MEAN PERCENT MEAN PERCENT MEAN., PERCENT 
CONTRo CONTR. CONTR,, CONTR. CONTR.CONTR. 

+14,566 +18.67 +29, 213 +54.57 +20.86 +166.88 

+29,750 +38.13 +27,683 +51. 71 +4.92 +39.36 

+11,953 +15.32 +22,834 +42.,66 +16.24 +129.92 

+6,409 +8.21 -8,299 -15.50 -.679 -5.43 

+15,339 +19.66 -17,901 -33.44 -28.84 -230.72 

+78)017 +100.00 +53,530 +100.00 +12.50 +100.00 

REDN. 

MEAN 
CONTR. 

+27.17 

+5.51 

+17.80 

-3.264 

-33.33 

+13.89 

IN AREA BRINELL 
HARDNESS 

PERCENT MEAN PERC. 
CONTR. CONTR. CONTR. 

+195.61 -127v84 -80.61 

+39 .. 67 -10.36 -6.53 

+128.15 -86.83 -54.75 

-23.50 +66.31 +41.81 

-239.96 +317.3 +200.06 

+100.00 +158.6 +100.00 

N 
N 



IV. A. 3. ~tallurgical Significance 

'J.h<• si~;:1. of the> coefficients in each equation gives a qualitative judgment as to the 
ind~pcndent variable's contribution towards the magnitude of the dependent variable. 

'lime pex:ce-ntaglf! contribution of each independent variable can also be computed and is 
simply the ratio of each individual product, and the algebraic sum of all the products, 
plus the constant. Note· at this point that the constant term is given in each of 

23 

tTruese equations to compensate for the base metal, etc., and any unidentified parameters. 
However, only the products derived from coefficients whose ~·s are 0.20 or less 
should be trusted as somewhat significant. 

TI~us, from a qualitative point of view, equation 1 indicates that the percent pearlite, 
percent carbon, percent ferrite and mean radius of the graphite nodules all favor an 
increase in the tensile strength. Equation 2 shows that while the carbon, pearlite, 
and ferrite percentages tend to increase the yield strength, the mean nodule radius 
t~nds to decrease it. Equations 3 and 4 indicate the contributions of all four inde­
pendent variables towards the percent elongation and percent reduction in area are 
the same as in Equation 2. Equation 5 shows that while the mean radius favors a higher 
BHN~ the carbon, ferrite and pearlite pe.rcentages favor a lower value. 

Figures 6-10 also point out the mean quantitative contribution of each independent 
variable towards the magnitude of the dependent mechanical properties. These mean 
quantitative contributions are also listed in Table 5. Further examination of these 
figures (6-10), however, indicates that none of these values can be trusted in all 
five equations due to the fact that their individual r.; 's are greater than 0. 2. 

These Series lA results are inconclusive due to a minimum number of data sets, but 
provide a good basis for future analyses. 

IV. B. Series lB Data 

TI~e second computer analysis attempted to derive five (5) more mathematical models 
f~r each dependent mechanical property as a function of all four (4) independent 
microstructural variables listed in Table 2. The general form of each of these equa­
tions was similar to that given in section IV. A. 

IV. B. 1. Linear Regression Models 

:r:quations 6-10 were derived on the basis of twelve (12) sets of data (see Table 2). 
:;olving for the five (5) constants required by the general equation, i.e., A

0
, A

1
, 

\
2

, A
3 

and A
4

,leaves seven (7) degrees of freedom for the regression analyses. 

:~:'1e Series lB models were derived to explain the variation in the ductile cast iron's 
t<?.:nsile strength» 0.2% yield strength, percent elongation, percent reduction in area 
and Bdnell hardness num1ber and are listed in Mathematical Model Set II. The correla­
tion coefficient and standard error of estimate are also listed for each of these 
~qu.ations. 

!V. B. 2. Statistical Significance 

Based upon the computer re$ults, the levels of significance of equations 6, 7, 8, 9 
and 10 are 0.025, 0.05~ 0.10, 0.05 and 0.05, respectively. 

1h® plotbacks of these five models are illustrated in Figures 11-15 and visually show 



MATHEMATICAL MODEL SET II - SERIES lB 

EQUATIONS 

'!ENSILE STRENGni = + 96,058 - 1,393 (Vol % C) + 334 (Vel % P) 
- 276 (Vel % Fe) + 3,854,025 \r)o o o oo o (6) 

R(6) = 0.907 a = 11,600 
e (6) 

Oo 2 PERCENT YIELD STRENGni = + 51,859 - 322 (Vol % C) 
+ 313 (Vol % P) - 63o5 (Vol % Fe) 
- 3,118,382 (r).ooooooooo•oo(7) 

R{7) = 0.854 a = 9,320 
e {7) 

PERcENT ELONGATION = -14,621 + lo306 (Vol % C) + 
.086 (Vol% P) + 0.228 (Vol% Fe) -
5,553.7 {r).ooooooooooooooooooo•oooo(8) 

R(8) = 0.760 a = 5.76 
e (8) 

PERCENT REDUCTION IN AREA = -20.0 + 1.83 (Vol %C) 
+ ol09 (Vol % P): +· • 268 (Vol % Fe) 
- 9,ool (r) •• oo•o•o••oooooooo(9) 

a = 5.21 
e (9) 

BRINELL HARDNESS NUMBER=+ 345.63 ~ 9.73 (Vol% C) 
(1000 Kg) - .543 (Vol % P) - 1.55 (Vol % Fe) 

+ 52,39o.o <r>•o••oooooooooooo(lo> 

R(lO) = 0.864 cr = 28.3 
e (10) 
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the magnitudes of each correlation coefficient. 

In addition, Figures 16~20 identify the level of significance of each independent vari= 
able contained in equations 6-10, The only individual coefficients statistically sig­
nificant at the 0.2 confidence level or less appear in equations 9 and 10 (see figures 
19 and 20) and include the volume percentages of carbon and ferrite plus the mean 
radius of the graphite nodules. 

lV. B 3. Metallurgical Significance 

On a qualitative basis, equation 6 indicates that the volume percent pearlite and mean 
radius of graphite nodules enhance the tensile strength, while the volume percentages 
of carbon and ferrite tend t0 reduce this property. The latter two variables are ep~ 
posite in their contributions, compared to the results of equation 1, but, model 6 is 
more acceptable from both a statistical and metallurgical point of view. 

Equation 7 shows that the volume percent pearlite increases the yield strength while 
the other three independent variables tend to decrease this property. The ferrite and 
pearlite variables are opposite in their contribution, compared to the results of 
equation 2, but, model 7 is more compatible both statistically and metallurgically. 

The qualitative contributions ef all four independent variables in equations 8, 9 and 
10 towards the magnitudes of the perce~t elengatien, percent reduction in area and 
Brinell hardness number, respectively, a~e the same as they were in equations 3, 4 
and 5,. Equation~ 9 and 10, however, are mere acceptable statistically. 

Figures 16-20 also point out the mean quantitative contribution of each independent 
variable towards the aagnitude of the dependent mechanical properties. These mean 
values for each equation are also listed in Table 6. Further examination of figures 
16-20 shows that the only values of the independent variables that should be experi~ 
mented with for improved mechanical property attainment should be the carbon, ferrite 
and mean radius parameters contained in equations 9 and 10, due to the fact that their 
individual n. 

8 s are 0.2, or less. 

These Series lB results are more conclusive than those achieved in Series lA, but ad­
ditional data sets are required for an in-depth analysiso 

IV. c. Series 2A Data 

The third computer analysis attempted to derive four (4) mathematical models for each 
dependent, as cast, mechanical property as a function of all six (6) independent ele­
mental variables listed in Table 3. The general form of each ef these equations was 
as follows: • 

MECHANICAL PROPERTY = B0 + B1 (Total Percent Carbon) + B2 (Percent Silicon) 

+ B3 (Percent Manganese) + B4 (Percent Nickel) 

+ B5 (Percent Molybdenum) + B6 (Percent Magmesium) 

IV. c. 1 Linear Regression Models 

All four (4) equations were derived from as cast properties and were based on fifteen 
(15) sets of data (see Table 3). Solving for the seven (7) constants required by the 
general equation, i.e., B0 , B1~B6 , leaves eight (8) degrees of freedom for rhe regres­
sion analyses. 

30 
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TABLE 6 QUANTITATIVE RESULTS OF THE TENSILE STRENGTH, 
YIELD STHENGTH, REDUCTION OF AREA~ PERCENT ELONGATION, 

AND Br,It--l£LL HARDNESS EQUATIONA 

Series lB 

TENSILE STHENGTH YIELD STRENG Til PERCENT ELONG. REDN. OF AREA BRINELL fu\RD~~SS 

INDEPENDENT MEAN t-1EAN PERCENT NEAN PERCENT MEAN PERCENT MEAN PERCENT i·illAN PERCENT 
VARIABLE VALUE CONTR. CONTR. CONTR. CONTR. CONTR. CONTR. CONTR. CONTR. CONTR. CONTR. 

VOL. %.£ 12.0 -16,716 -21.27 -3,864 -7.38 +15.67 -133.36 +21.96 +172.37 -116.76 -68.80 

VOL. %f 33.3 +11,122 +14.15 +10,423 +19.91 +2.86 +24.34 +3.63 +28.49 -18.08 -10.65 

VOL. % Fe 54.7 -15,097 -19.21 -3,473 -6.63 +12.47 +106.13 +14.66 +115. 07 -84.79 -49.96 

r of GRAPHITE .000834 +3, 214 +4.09 -2,601 -4.97 -4.63 -39.40 -7.51 -58.95 +43.69 ~-25.75 

CONSTANT +96,058 +122.24 +51,859 !-99. 07 -14.62 -124.43 -20.0 -156.99 +345.6 +203.65 

MEAN MECH. +78,581 +100.00 +52,344 -:-100.00 +11. 75 +100.00 +12.74 -:-100.00 +169.7 +100.00 
PROPERTY 



These Series 2A models were derived to explain the variation in the ductile cast 
iren 1s as cast, tensile strength, 0.2% yield strength, percent elongation and 
Brinell hardness number and are listed in mathematical Model Set III. 

IV. C. 2. Statistical Significance 

The cemput~r results indicate that the levels of significance of equations 11, 12, 
13 and 14 are 0.1, 0.1, 0.1 and 0.05, respectively. 

The plotbacks of these four models are illustrated in Figures 21-24 and visibly show 
the poor values of each correlation coefficient. 

Also, Figures 25-28 identify the level of significance of each independent variable 
contained in equations 11-14. The only individual coefficients statistically sig­
nificant at the 0.2 confidence level or less appear in equations 11 and 14, i.e., 
the tensile strength and Brinell hardness number models. The carbon, silicon and 
manganese coefficients were the significant ones in model II while the manganese, 
nickel, molybdenum and magnesium coefficients fell in this category in model 14. 

IV. C. 3. Metallurgical Significance 

From a qualitative point of view, equation 11 shows that while carbon and magnesium 
enhance the as cast tensile strength, silicon, manganese, nickel and molybdenum tend 
to reduce this property. Equation 12 indicates that silicon, manganese, molybdenum 
and manganese tends to increase the yield strength while carbon and nickel reduce it. 
Equation 13 shows that manganese, molybdenum and magnesium enhance the percent elonga­
tion while carbon, silicon and nickel lower it. Finally, equation 14 indicates that 
carbon, manganese, nickel and molybdenum contribute positively towards the Brinell 
hardness number while silicon and manganese are negative contributors. 

Figures 25-28 and Table 7 illustrate the mean quantitative contribution of each in­
dependent elemental variable towards the magnitude of the dependent mechanical prop­
erties. Further examination of these four latter figures, however, shows that only 
the tensile strength and Brinell equations contain independent variables significant 
at the 0.2 confidence level or less. 

These Series 2A results are inconclusive due to the high confidence levels of the 
equations and independent variables. Several reasons for these poor statistical out­
puts could be attributed to lack of sufficient data sets and the as cast conditions 
of this series of test bars. 

IV. D. Series 2B Data 

The fourth computer analysis attempted to derive four (4) more mathematical models 
for each normalized, ductile cast iron's mechanical property as a function of all 
six (6) independent, elemental variables listed in Table 4. The general form of 
each of these equations was similar to that given in Section IV. c. 

IV. D. 1. Linear Regression Models 

Equations 15-18 were derived on the basis of thirteen (13) sets of data (see Table 4). 
Solving for the seven (7) constants required by the general equation, i.e., B0 , 
B1-B6, leaves only six (6) degrees of freedom for the regression analyses. 

These Series 2B models were generated to describe the variation in the normalized, 
ductile cast iron's tensile strength, 0.2% yield strength, percent elongation and 
Brinell hardness number and are listed in Mathematical Model Set IV. 
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}~TH~~TICAL MODEL SET I~r - SERIES 2A 

EQUATIONS 

TENSILE STRENGTH= 47,050.7 + 39,250.9 (T.C.)- 32,379.7 (% Si) 
- 16,249.0 ((. Mn) - 2,920.4 (% Ni) - 5424.0 (% Mo) + 59,811.2 (% Mg) 

••.•••••••••••••.• , •.••• (11) 

R(ll) = o. 658 ae(ll) = 7,562 

0.2% YIELD STRENGTH= 77,415.6- 5.55 (T.C.) + .697 (% Si) + 5.7 (% Mn) 
- .48 (% Ni) + 2.34 (% Mo) + .046 (% Mg) ...................... (12) 

R( 12) = 0.508 :-e(l2) = 6,220 

PERCE~T ELONGATION = 3.48 - 0.017 (T.C.) - 0.002 (% Si) + 0.00092 (% Mn) 
-0.00645 (% Ni) + 0.021 (% Mo) + 0.172 (% Mg) ................. (13) 

R(l 3) = 0.439 0
e(l3) • 1.325 

BRINELL HARDNESS NUMBER= 191.6 + 28.3 (T.C.)- 15.8 (% Si) + 17.7 (% Mn) 
+ 15.1 (%Ni) + 58.9 (%Mo)- 355.9 (%Mg) .................... (l4) 

R( 14 ) = 0.867 r;e(14) =7.04 
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TABLE 7 C:U,\I,:rl.'.:\ TIVE RESULTS OF INITIAL TENSILE, 
YIELD, ELC:\~G:\TION AND HARDNESS EQUATIONS 

SERIES 2A 

AS CAST DATA '.LLNJII~E S'l'l:ENGTH 0.2% YIELD STRENGTH PERCENT ELONGATION BRINELL HARDNESS 
IND. VAR. BEAN lJEAN PERCENT EEAN PERCENT MEAN PERCENT MEAN PERCENT 

VALUE CONTR. CONTR. CONTR. CONTR. CONTR. CONTR. CONTR. CONTR. 

T. c. 3.56 139.733 123. ()2 -19.76 -0.0255 -0.0605 -1.772 100.748 35.95 

% Si 1.96 -63,464 -55.86 1.37 0.~018 -0.0039 -0.115 -30.968 -11.05 

%Mn 0.458 -7,442 -6.55 2.61 0.0034 0.0004 0.012 8.106 2.89 

% Ni 1. 766 -5,157 -4.54 -0.85 -0.0011 -0.0114 -0.334 26.666 9.52 

1. Mo 0.0426 -231 -0.205 0.099 0.0013 0.0009 0.264 2.509 0.89 

% Mg 0.05173 3,094 2.72 0.024 0.0002 0.0089 0.260 -18.411 -6.57 

CONST. 47,051 41.42 77,415.6 100.0210 3.4800 101.920 191.600 68.37 

MEAN MECH. 113.583 100.00 77,399.1 100.00 3.4144 100.000 280.250 100.00 

PROPERlY 



MATHEMATICAL MODEL SET IV - SERIES 2B 

EQUATIONS 

TENSILE STRENGTH= 117,236 + 9,785 (T.C.) - 15,498 (% Si) 
+ 12,699 (1Jin) - 708 (% Ni) - 2,426 (% Mo) 
+ 86,524 (% Mg)•••••••••••••••••••••••••••••••••(15) 

R(15) = 0.984 C1 .. 1,067 
e (15) 

0.2 PERCENT YIELD STRENGTH= 131,908 - 23,213 (T.C.) + 2,381 (% Si) 
+ 22,889 (% Mn) + 7,637 (% Ni) 
+ 89,986 (% Mo) ± 125,130 (% Mg) ••••• (16) 

C1 = 853 
e (16) 

R(16) = 0.999 

PERCENT ELONGATION= - 9.4 + 5.6 (T.C.) - 2.2 (% Si) - 1.5 (% Mn) 
- 1.2 (% Ni) - 8.3 (% Mo) + 13.3 (% Mg) ••••••• (17) 

1' _:::, ,--',_ ,--:;:, }' ':~' '~ ' t\ i '\ ....._ ., j ·:: '~; ( __ ) 6 

BRINELL HARDNESS NUMBER = 517.2 - 15.6 (T.C.) - 85.9 (% Si) + 3.5 (% Mn) 
- - 4.3 (Ni) 187.9 (% Mo) • 263.9 (% Mg) ••• (18) 

R(18) = 0.999 C1 = 0.02 
e (18) 

48 



IV. D. 2. Statistical Significance 

Equations 15-18 had the highest correlation coefficients achieved during the entire 
investigation and all four were significant at the 0.001, confidence level. 

The plotbacks of these four models are shown in Figures 29-32 and visibly illustrate 
the high value of each correlation coefficient. 

In addition, Figures 33-36 identify the level of significance of each independent 
variable contained in equations 15-18. Twenty-three (23) out of the total twenty­
four (24) elemental variables in these four (4) models are statistically significant 
from the 0.2 confidence level down to the 0.0005 confidence level. The remaining 
variable was significant at the 0.3 confidence level. 

IV. D. 3. Metallurgical Significance 

Qualitatively, equation 15 indicates that tensile strength of the normalized ductile 
cast iron increases with additions of carbon, manganese and magnesium and decreases 
with additions of silicon, nickel and molybdenum. Equation 16 shows that the yield 
strength tends to increase with silicon, manganese, nickel, molybdenum and magnesium 
additions and will be reduced with carbon additions. Equation 17 indicates that 
while carbon and magnesium enhance the percent elongation, silicon, manganese, nickel 
and molybdenum tend to decrease this property. Finally, equation 18 shows that man­
ganese, nickel and molybdenum additions increase the Brinell hardness number while 
carbon, silicon and magnesium decrease this property. 

Figure 33-36 and Table 8 show the mean quantitative contributions of each indepen­
dent elemental variable towards the magnitude of the dependent mechanical properties. 
Further examination of these figures indicates that all the elemental variables used 
in these models, except the silicon in equation 16, can be trusted due to the fact 
that their u values are 0. 2 or less. 

Thus, this last series of mathematical models are the most significant ones derived 
during this investigation and could be experimented with in the design of ductile 
cast iron alloys with improved mechanical properties. 
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IERAGE NORMALIZED '!ENSilE 
~TA 

IND. MEAN MEAN 
VAR. VALUE CONTR. 

. c. 3.56 34,834 

Si 1.96 -30,376 

Mn 0.458 5,816 

Ni 1.766 -1,250 

Mo 0.0426 -103 

Mg 0.05173 4.476 

>NST. 117,236 

~AN MECH. 130~633 

WPERTY 

TABlE 8 QUANTITATIVE RESULTS OF INITIAL 'IENSII.E, 
YmLD, ELONGATION AND HARDNESS EQUATIONS 

SERIES 2B 

STRENGTII 0. 2% YIELD STRENGTII PERCENT ELONGATION 

PERCENT MEAN PERCENT MEAN PEJU:ENT 
CONTR. CONTR. CONTR. CONTR@ CON'IR. 

26.67 -82,638 -93.68 19.94 531.34 

-23.25 4,667 5.29 -4.31 -114.93 

4.45 10.483 11.88 -0.69 -18.31 

-0.96 13,487 15.29 -2.12 -56.48 

-0.08 3,833 4.35 -0.35 -9.44 

3.43 6,473 7.34 +0.69 18.34 

89.74 131,908 149.53 9.40 -250.53 

100.0 88,213 100.0 3.74 100.0 

BRINELL HARDNESS 

MEAN PERCENT 
CONTR. CONTR. 

-55.54 -18.71 

-168.36 -56.72 

1.60 

7.59 

8.00 

-13.65 

517.20 

296.85 

0.54 

2.56 

2.70 

-4.59 

174.23 

100.0 

Vl 
00 



V. UTILIZATION OF EQUATIONS 

The statistically and metallurgically significant mathematical models can be used to 
design improved cast shell alloys and thus replace a great deal of "guess-work" and 
"rule of thwnb" techniques currently being implemented. 

The equations could also be maximized or minimized for any variable by proper adjust­
ment of the other variables. Several limitations should be imposed, however, and are 
as follows: 

1. The independent variables should be similar to those used in 
generating these data that are evaluated herein; 

2. Extrapolation can be permitted to a small degree; and 

3. Only the more significant variable contributors should be 
varied, i.e., only those whose r;' s are 0. 20 or less. 

The use 
fields 
made. 
in the 

of reliable, statistically derived equations in research and development 
is obvious. They allow better qualitative and quantitative judgments to be 
They can also be used as tools to guide experimental and theoretical studies 
effort to learn more about metal systems. 
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VI. CONCLUSIONS fL_,.J ~': ·· ·' ·' 60 

~complete fragmentation data resulted in the redirectio~ of this project towards an 
' implementation of a scientific analysis of factors affecting the mechanical properties 

of ductile cast iron alloys. The Series 1 mathematical models involving tensile strength, 
0.2% yield strength, percent elongation, percent reduction in area and Brinell hard- · 
ness number as the dependent variables and four (4) independent, microstructural vari­
ables proved inconclusive due to insufficient data sets, but, established a good founda­
tion for future investigations. The Series 2 equations involving all but the percent 
reduction in area variable and six (6) independent, elemental variables proved to be 
significant, especially in the as normalized, Series 2B models. Statistically, equa­
tions 15, 16, 17 and 18 were significant at the 0.001 confidence level, or less, and 
twenty-three (23) out of twenty-four (24) elemental variables in these four (4) models 
are significant from the 0.2 confidence level down to the 0.0005 confidence level. 
Metallurgical significance of the last four(4) equations can be based on the following 
criteria of judgment, i.e., 

1. Carbon and silicon are graphitizers and ferritizers and should 
decrease strength properties and increase ductility properties; 

2. Nickel and magnesium are ferrite strengtheners and should increase 
strength while decreasing ductility; and 

3. Manganese and molybdenum are pearlite stabilizers which should also 
increase strength and decrease ductility. 

Thus, seventeen (17) out of the twenty-four (24) inde(ndent, elemental variables, 
or 71%, are in agreement with metallurgical theory. 



VII I RE COMl:JE NDA TIONS 

Since this investigation was based on a limited number of reliable data sets, it is 
recommended that it be continued and expanded in scope during the next year. 
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